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A shorter lifespan as a potential cost of high reproductive effort in humans

has intrigued researchers for more than a century. However, the results have

been inconclusive so far and despite strong theoretical expectations we do

not currently have compelling evidence for the longevity costs of reproduc-

tion. Using Monte Carlo simulation, it is shown here that a common practice

in human reproduction-longevity studies using historical data (the most rel-

evant data sources for this question), the omission of women who died prior

to menopausal age from the analysis, results in severe underestimation of

the potential underlying trade-off between reproduction and lifespan. In

other words, assuming that such a trade-off is expressed also during reproduc-

tive years, the strength of the trade-off between reproduction and lifespan is

progressively weakened when women dying during reproductive ages are

sequentially and non-randomly excluded from the analysis. In cases of small

sample sizes (e.g. few hundreds of observations), this selection bias by redu-

cing statistical power may even partly explain the null results commonly

found in this field. Future studies in this field should thus apply statistical

approaches that account for or avoid selection bias in order to recover reliable

effect size estimates between reproduction and longevity.
1. Introduction
One of the most enduring questions in studies of human life-history evolution has

been whether women, who invest more direct energetic resources in reproduction

than men, sacrifice their longevity for higher reproductive success. These studies

are often grounded on the evolutionary theories of senescence that predict

reduced old-age somatic maintenance and survival resulting from higher lifetime

reproductive effort at early ages [1,2]. Despite over a century-long research effort,

starting from Beeton et al. [3], evidence for the survival costs of reproduction at the

phenotypic level is still surprisingly scarce in humans (reviewed in [4–8]). The

reasons why we do not generally see such costs in most of the human populations

studied are not well understood, but methodological discrepancies and issues

concerning data quality may be likely candidates for the mixed results [5,7].

The most relevant sources of human reproduction-longevity associations come

from historical parish records. In historical populations, natural fertility was high

owing to negligible birth control, mortality rates were high in the absence of

modern medical care and the full length of lifespan of individuals can be tracked

from these records [5,7]. A common practice in these studies has been to restrict

the analysis to those women only who survived beyond the expected age of natural

menopause, often defined as the age of 45–55 years [4–8]. The obvious inferential

reason for this has been to maintain the ‘causal’ interpretation of the regression esti-

mate of lifespan on reproduction. That is, by including also women who died

before reaching menopausal age might confound the regression estimate because

longer lived women not dying from reproduction-related causes also had more

time to produce many offspring during their lifetime, resulting in a positive associ-

ation between reproduction and lifespan. More often, stated reason for considering

post-menopausal women only has, however, been the interest to focus on women’s

post-reproductive or -menopausal survival. In addition to that, this latter argument

may be a natural consequence of the former argument, it is unlikely that
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Figure 1. The frequency distribution of lifespans of reproductive age women
in five historical parishes (Karesuando, Jukkasjärvi, Jokkmokk, Vilhelmina and
Gällivare) from northern Sweden (n ¼ 16 621).
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reproductive costs in human females are manifested only

during post-menopausal lifespan and not also during reproduc-

tive years [9,10]. A most obvious example against this argument

being maternal death at childbirth. But what is important here is

that restricting the analysis to post-menopausal women has a

major statistical drawback: the fraction of women excluded

by this procedure based on how long they lived does not rep-

resent a random draw from the available sample and, thus,

it distorts the results of the analysis owing to selection bias

(e.g. [11,12]). In missing data literature, this phenomenon is

termed as non-ignorable missingness, meaning that the data

are missing not at random but depending on its own values

[13,14]. Inconsistency of estimated regression coefficients

owing to the omission of observations of the dependent variable

based on its values seems somewhat recognized among human

evolutionary demographers, but despite the very few exceptions

[9,15], researchers interested in human reproduction-longevity

associations seem to largely discard potential selection bias.

This may partly owe to the fact that the magnitude of this pro-

blem has not been explicitly demonstrated in this field and,

hence, its severity may not be yet fully acknowledged.

To fill this gap, this article provides an explicit demon-

stration of the adverse consequences of selection bias on

drawing biological conclusions from the data in the context of

human reproduction-longevity trade-offs. This is done using

Monte Carlo simulation, where the influence of non-random

selection of observations of the dependent variable into the

analysis (i.e. selection of women based on the length of their life-

span) on the consistency of regression estimate is investigated.

In order to also assess the influence of selection bias on the stat-

istical powerof the regression estimate of interest, the simulation

is run using three different sample sizes (n ¼ 200, 500 and 1000)

commonly encountered in these kinds of studies. Furthermore,

a dataset from preindustrial northern Finland [16] is examined

by first performing an analysis only for post-menopausal

women and then by correcting for the non-random omission

of pre-menopausal women from the analysis.
2. Methods
Monte Carlo methods rely on repeated random sampling from

probability distributions to obtain numerical results [17]. Such

simulations are a convenient way to examine experimentally how

the violations of the particular assumptions of statistical models

influence the robustness of statistics of interest. These simulations

involve the generation of numerous sample datasets based on a

true population model, which are then examined using a misspeci-

fied analysis model that differs in its data-generating assumptions

[18]. After this, the results are aggregated and the researcher can

evaluate the impact of model misspecification, for example,

on parameter estimates and their standard errors.

The simulation started by the generation of two continuous

and normally distributed random variables, both having a mean

of zero and unit variance (i.e. the variables were standardized by

standard deviation). Here, the dependent variable represents simu-

lated lifespan and the independent variable represents simulated

reproductive effort (e.g. the lifetime number of offspring born).

Note that real-life distribution of lifespans in historical populations

unlikely conformed smoothly to a normal distribution. For

example, as seen in the data of reproductive aged women (i.e.

over the age of 13 years in these data) from historical northern

Sweden [19], the distribution of lifespans is rather highly skewed

to the right (i.e. positive skew) (figure 1). The consequences of

sample selection in the presence of strong positive skew should,
however, become evident faster than in distributions with zero

skew (i.e. symmetric normal distribution), because the mass of the

distribution in positively skewed distributions is concentrated on

earlier deaths, hence the median shifting to the left from the mean

(being equal in a zero-skew distribution). Moreover, as selection

bias is inherently a problem arising from non-ignorable missing

data [12,13], regression models based on different outcome distri-

butions should be equally vulnerable to selection bias (excluding

logistic regression, see [20]). In addition, the distribution of repro-

ductive effort is irrelevant here, because the marginal distribution

of independent variables is not part of the regression models [12].

In the data-generating model, a regression coefficient between

these two variables was set to three different values: 20.1, 20.3

and 20.5. These values are commonly considered as small,

medium and large effect sizes in the statistical literature [20].

These negative correlations illustrate the different magnitudes of

the trade-off between reproduction and lifespan. A total of 10 000

replications were drawn. Since studies of human reproduction-

longevity trade-offs usually vary in their sample size, ranging

approximately from less than 100 women to some thousands of

women, the simulations were run with the samples sizes of 200,

500 and 1000 observations (sample sizes exceeding n ¼ 1000 had

trivial influences on the results; see the electronic supplementary

material, table S1). All replications converged normally.

In order to demonstrate the effects of non-random selection of

women based on their lifespan on the expected trade-off between

reproduction and longevity, the data were analysed using the

same model, but sequentially deleting the observations by every

10th percentile of the simulated lifespan and then re-running the

model. The exact values for the percentiles used as cut-off values

for the simulated lifespan distribution were obtained by running

one replication with a very large sample size (n ¼ 10 000) (see

the electronic supplementary material, figure S1). To evaluate the

stability of the simulations conducted, the seed value was changed

once in order to confirm the results of the simulations.

The inconsistency introduced to the regression estimate by

the per-10th-percentile deletion of simulated lifespans was esti-

mated using the mean relative percentage of parameter and

standard error bias [18]. A bias more than 10% and 5% in the

point estimate and in its standard error, respectively, is considered

as unacceptable [21]. Monte Carlo simulations can also be used to

simultaneously estimate the statistical power of the estimates of

interest [21]. Hence, the 95% coverage of the regression estimate

and its power were determined. The 95% coverage represents the

proportion of replications for which the 95% confidence interval

(CI) contains the population value of the parameter, while statisti-

cal power (for those population parameters that differ from zero

by design) means the probability of rejecting the null hypothesis

http://rspb.royalsocietypublishing.org/
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when it is false. For the 95% coverage, values between 0.91 and 0.98

are desired [21], whereas the critical value for adequate statistical

power is usually considered to be 0.8 [22].

As a simple solution to this selection bias problem, censored-

normal (Tobit) regression modelling [23] is introduced. In this

approach, instead of treating the women dying prior to menopause

as missing data, all women dying before, e.g. age of 50 years were

scored as having died exactly at the age of 50 years (i.e. they are

considered as left- or below-censored). The censored regression

approach was then applied to the Monte Carlo simulated datasets

with the medium effect size (b ¼ 20.3) in the same manner

as above. In addition, a previously published dataset from pre-

industrial northern Finland examining how women’s lifetime

reproductive effort, measured as the number of offspring surviv-

ing to adulthood, was related to their post-menopausal lifespan

[16] is re-analysed using censored-normal regression approach.

Because the whole dataset has been re-collected since the publi-

cation of Helle et al. [16], the results are not expected to replicate

perfectly. Furthermore, the model used here controlled for

mothers’ ages at first and last reproduction, ethnicity (indigenous

Sami or settled Finn), the main livelihood of their family

(traditional Sami livelihood or animal husbandry of Finns),

study parish and study period, of which all were not included in

the original analysis [16]. First, the analysis was restricted only to

women who survived to age 50 or above (n ¼ 503) using regular

regression approach with robust maximum-likelihood estimation.

The model was then re-run with scoring all those women

who died prior to age 50 as having died at the age 50 of years

(n ¼ 689) and using censored-normal regression approach with

robust maximum-likelihood estimation. In this sample, 27% of

women were thus excluded non-randomly from the analysis if

only post-menopausal mortality is considered. The simulations

and the re-analysis of human dataset were conducted with

MPLUS v. 8 [24]. MPLUS code used in simulations is given in the

electronic supplementary material.
0 90
the percentile of observations deleted

8070605040302010

re
gr

es
si

on
 s

–0.6

–0.5

–0.4

–0.3

–0.2

Figure 2. The behaviour of average regression slopes and their average stan-
dard errors across 10 000 replications in response to selecting sample
observations based on their values, by the every 10th percentile. From the
top to the bottom, the Monte Carlo simulation was run using large (n ¼
1000), medium (n ¼ 500) and small (n ¼ 200) sample sizes using three
effect sizes: 20.1 (white dots), 20.3 (black dots) and 20.5 (grey dots).
3. Results
Irrespective of the sample and effect size used in the simu-

lations, non-random deletion of the observations of simulated

lifespan based on their face value had a clear attenuating

effect on the regression estimate: the more low-value obser-

vations of the dependent variable were omitted from the

analysis, the more the regression estimate was biased towards

zero (figure 2; electronic supplementary material, table S2).

In other words, the underlying trade-off between reproduction

and longevity was greatly underestimated when women dying

at younger ages were left out of the analysis. The relative bias of

regression slope in all the sample sizes considered greatly

exceeds the recommended cut-off value of 10% when just

10% of observations from the lower bound of the distribution

were deleted (electronic supplementary material, table S2).

The non-random deletion of observations of the dependent

variable seems to affect the relative bias of standard errors

less dramatically compared with their point estimates, although

the recommended cut-off value of 5% is also clearly exceeded

when just 10% of the observations were deleted from the

analyses, irrespective of effect and sample sizes (electronic

supplementary material, table S2). In addition, the 95% cover-

age of CIs dropped immediately below the recommended

threshold (i.e. below 0.91), meaning that even excluding only

the 10% of the lower-bound observations will produce incorrect

results in terms of true effect size. A slight exception to this was

seen in the case of small effect and sample sizes, where 95%

coverage dropped below the threshold when 20% of the
lower-boundobservationsweredeleted(electronicsupplementary

material, table S2).

Monte Carlo determined estimates of statistical power

showed that if the effect size is small (i.e. 20.1) and sample

selection is present, there is not enough power to detect a

trade-off between reproduction and longevity in sample sizes

below 1000 observations (electronic supplementary material,

table S2). When the effect size increases to 20.3, statistical

power remained acceptable (i.e. greater than 0.8) until roughly

the 70% and 60% of the lower bound observations were

excluded from the analysis in sample sizes of 1000 and 500

observations, respectively (electronic supplementary material,

table S2). In effect size of 20.3 and small sample size of just

200 observations, even excluding the observations below the

http://rspb.royalsocietypublishing.org/
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20th percentile was enough to drop the probability to correctly

reject the null hypothesis below the generally accepted value of

0.8 (electronic supplementary material, table S2). In the case of

a large effect size (i.e. 20.5), sufficient power was obtained

until 90%, 80% and 20% of the lower bound observations

were excluded from the analysis in sample sizes of 1000, 500

and 200 observations, respectively (electronic supplementary

material, table S2).

When applied to the same Monte Carlo simulation scen-

ario as used above, the approach based on censored-normal

regression successfully produced consistent regression

estimates, attained good coverage of those estimates and pre-

served high statistical power (see the electronic supplementary

material, table S3).

Re-analysis of the association between reproductive effort

and longevity in preindustrial northern Finland showed that

when the analysis was restricted to women living to age 50

or above, the regression estimate of lifespan on reproductive

effort was 0.25 (95% CIs ¼ 20.45, 0.95). By contrast, the

inclusion of women who died prior to age 50 into the analysis

and scoring them as having died at the age of 50 years, the cen-

sored-normal regression reported a regression estimate of 0.58

(95% CIs ¼ 20.25, 1.41). That is, accounting for selection bias

more than doubled the effect size estimate in this sample.
4. Discussion
The Monte Carlo simulation study and empirical example

from preindustrial northern Finland clearly showed that

regression estimates are strongly biased towards zero when

observations of the dependent variable are deleted from the

analysis based on their scores (i.e. non-randomly). Such an

attenuation of regression estimates is because of the resulting

correlation between the independent variable and the model

error term, thereby violating one of the key assumptions of

any regression analysis [25]. This is not a new result and

the adverse consequences of non-random sampling are well

known in the statistical literature (see, e.g. [11–13]). But

despite its detrimental effects on the interpretation of the

data, it seems that the severity of selection bias is not yet

fully appreciated in the field of human evolutionary demo-

graphy (but see [9,15]), because there are recent studies that

did not consider potential selection bias in their data analysis

although it was probably working (e.g. [26–28]).

It is worrisome that excluding merely 10% of the women

who died at the youngest ages, the probability to detect the

true parameter value dropped well below the acceptable

level and the results were biased accordingly. This means

that despite the high statistical power to detect statistically sig-

nificant effects differing from zero (unless the sample size was

small, here n ¼ 200), the regression analysis failed to recover

the true magnitude of the underlying assumed trade-off

between reproduction and lifespan. This suggests that studies

with adequate sample size and statistical power finding evi-

dence for the predicted trade-off between reproduction and

longevity, but suffering from selection bias, have probably

underestimated the effect size of the trade-off. On the other

hand, studies based on small sample sizes (i.e. on few hun-

dreds of cases), suffering from selection bias and finding no

statistical evidence for the trade-off might have been under-

powered to detect small-sized trade-offs (please note that we

do not know the true biological effect sizes in these studies).
This is not surprising because it is well known that small stat-

istically significant associations are harder to find in small

samples owing to larger sampling error. This can be seen

also in the current literature: when plotting the results from

those previous studies that have examined reproduction-long-

evity trade-off in historical data by including only post-

menopausal women, it is obvious that null results (and positive

associations) are related to small sample size in this field

(figure 3; electronic supplementary material, table S4). For

example, the median sample size of studies finding a statisti-

cally significant negative association between reproductive

effort and longevity is 3666 women, whereas for those

studies reporting a null finding it is just 386 women (note

that variability in the inclusion of confounding factors

among studies is also likely to, at least partly, explain the

mixed results).

The current simulation assumed that the two variables

modelled were negatively associated regardless of the values

of the dependent variable. In terms of life-history trade-offs,

this means that the simulation did not assume that reproduc-

tive costs were manifested only during post-menopausal

period, as assumed by the most (reviewed in [4–8]) but not by

all previous studies [9,10]. Obviously, if the reproductive

costs are truly delayed and manifested solely during post-

menopausal period, then the approach restricting analysis to

post-menopausal women and discarding selection bias would

be fully appropriate. This is, however, unlikely because it

ignores the historically relevant direct cost of reproduction,

maternal death at childbirth. It also overlooks the fact that

proportionally considerably fewer women survived beyond

menopausal age in historical populations, for which we can

determine their full length of lifespan and hence appropriately

assess the costs of reproduction [6]. In addition, from an

evolutionary perspective, reproductive costs should be exami-

ned in terms of their fitness consequences to the individual,

and thus it can be argued that the potential costs are more impor-

tant during reproductive than post-reproductive years [29]. As a

matter of fact, in a long-lived species like humans, reproductive

costs are predicted to involve mostly future reproduction and

not future survival [29]. It should also be acknowledged that

mammalian studies of longevity costs of reproduction do not

make respective assumption that such costs would be confined

to individuals of the oldest age-class only [29,30].

http://rspb.royalsocietypublishing.org/
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These results were also based on a simple bivariate simu-

lation. However, because the selection bias results from the

non-random selection of dependent, not of independent vari-

ables [12], these results should be transferrable to situations

with multiple independent variables. This is because the

selection of observations based on the scores of independent

variables has no similar consequences on statistical inference

based on unstandardized estimates because the marginal

distribution of independent variables is not part of the

regression models [12]. In addition, the current simulation

used effect sizes considered typical for small, medium and

large effect sizes in the statistical literature [21]. Because

there has not been much discussion in the literature on the

expected effect size with respect to reproduction-longevity

trade-offs in humans, it is not straightforward to say whether

the effect sizes used here were realistic or not.

It goes without saying that selection bias is particularly

problematic in populations with marked mortality during repro-

ductive years [8], concerning not only women but also their

spouses as women need to have a living partner to produce

offspring. If we, for instance, consider reproductive aged

women from the preindustrial (1750–1900) northern Sweden

[18], 68.9% of the women died before their 50th birthday

(figure 1). Note that such mortality may have been mainly

caused by extrinsic factors (diseases, food deprivation, etc.)

and not directly by maternal deaths at or soon after childbirth

as discussed in the previous paragraph. Therefore, selection

bias is an issue predominantly in studies using historical popu-

lations that lived prior to modern medical care, which has

greatly improved women’s survival prospects in modern

societies. However, the most relevant studies in this field exam-

ining the known lifespan of women (i.e. not using mortality data

where part of the women analysed were still alive) rely on

historical datasets where pre-menopausal mortality was high [6].

When examining populations where pre-menopausal mor-

tality cannot be ignored, methods to adjust for non-random

sampling need to be applied if the researcher is determined to

use post-menopausal sample only. Statistical methods devel-

oped to incorporate the selection or missing data processes

into the modelling exercise include Heckman’s two-stage mod-

elling [11] and several of its newer variants [12,31–33]. However,

these models are sensitive to whether the mechanism of missing

data has been adequately modelled and thus great care should

be taken when applying these models [13,32,33]. Moreover,

one can use censored-normal (Tobit) regression modelling [23],

which when applied to the same Monte Carlo simulation

scenario successfully produced consistent regression estimates,

attained good coverage of those estimates and preserved high

statistical power. Traditionally, censored regression approach

is used in situations where the values below or above certain

thresholds are real but unobserved in the current study, and

thus they are scored at to those boundary values [12]. The trick

here is to regard the women dying prior to menopause as such

unobserved cases and not as missing values. Note that possible

reversed causality between reproduction and survival among

mothers dying during the reproductive years is not a concern

when the observations are censored from below (or left), because

the effect size between reproduction and lifespan is dominated

by the data points above the given censoring point. Below-

censoring is also possible in survival analysis framework and

e.g. accelerated failure time models can be applied in the same

way as censored regression models [34], and skewed response

distributions can be accommodated [35].
There is also a simpler and more straightforward way

to circumvent the need to apply the above-mentioned

selection modelling. That is by directly modelling the

length of post-reproductive (not post-menopausal as the

women’s age of natural menopause is not known from demo-

graphic records) lifespan instead of total lifespan while

controlling for the age when women ceased reproduction,

which obviously also affected how long women lived after

their last childbirth. This approach avoids the need to apply

any threshold age for women entering post-reproductive

period, the need to correct for sample selection, and retains

the full sample size and the direction-of-causality problem of

including also pre-menopausal women owing to the proper

time-ordering of the events studied [10]. Such approach to

model a time-to-event variable is commonplace in survival

analysis [34].

This simulation should not be seen as an attempt to model

the intricacies of trade-offs between lifetime reproductive effort

and survival in humans. Instead, the aim here was simply

to demonstrate the harmful consequences of a common statisti-

cal practice in the field of human evolutionary demography

using historical data, i.e. the non-random selection of post-

menopausal women only into the analysis. It is important to

acknowledge that the simulations conducted here implicitly

assumed that trade-off between reproduction and longevity

existed. In contrast with these simulations, the real-life example

from preindustrial northern Finland showed that the effect size

estimate between lifetime reproductive effort and lifespan was

positive and increased in size when accounting for below-

censoring. There is naturally no conflict between this empirical

result and simulations because both demonstrate the attenu-

ation of regression estimate towards zero when there is

non-ignorable missing data in the response variable. In this

empirical example, we just do not know the true effect size

between reproductive effort and longevity. That is, despite

the inclusion of several covariates, we might have missed

important confounders from the model, or simply the trade-

off is missing at the phenotypic level in this sample. Censored

regression approach will not alleviate the need to account for

other threats that prevent us from discovering true effect

sizes common to all regression modelling.

It has long been known among evolutionary biologists that

revealing underlying life-history trade-offs using correlative

data is very challenging, particularly at the phenotypic level

[36,37]. Although there have been recent efforts to examine

the costs of reproduction at the genetic level also in humans

[38–40], and presumably such studies are likely to increase

owing to greater data availability, our current knowledge in

this area rests heavily on phenotypic associations found in his-

torical data that are particularly vulnerable to methodological

problems. Omitted variable bias is known to be a more serious

obstacle in this respect than selection bias, because its role blur-

ring the trade-offs cannot be tested and because there are

potentially numerous omitted causes that may be responsible

for the observed associations between reproductive traits

and individual’s health and survival in correlative data. Never-

theless, a worthwhile service to the field would be to re-analyse

those historical datasets by accounting for the likely selection

bias or by avoiding it using the length of post-reproductive life-

span instead of the total length of lifespan, and to conduct a

meta-analysis based on those re-analyses. Before that, it may

be premature to make general conclusions on how expensive

reproduction really is to human longevity.
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